Когда выяснилось, что общая теория относительности несовместима со статической картиной вселенной, Эйнштейн вернулся к математическим выкладкам и на этот раз обратил более пристальное внимание на третью строку. Он осознал, что нет никаких наблюдений и экспериментальных данных, которые оправдывали бы её обнуление, и увидел, что у этой строки есть весьма примечательный физический смысл.

Если вместо нуля поставить в третью строку положительное число, снабдив пространственную ткань однородной постоянной энергией, то (по причинам, которые я объясню в следующей главе) каждая область пространства будет отталкиваться от всех остальных, порождая то, что большинство физиков считали невозможным, — отталкивающую гравитацию. Более того, Эйнштейн обнаружил, что если тщательно подобрать число, размещённое в третьей строке, отталкивающая гравитационная сила, возникающая во всём космическом пространстве, будет точно уравновешивать притягивающую гравитационную силу, которую порождает материя, наполняющая пространство, и тем самым вернёт к жизни статичную модель вселенной. Вселенная станет неизменной — подобно парящему в небе воздушному шару, который не поднимается и не падает.

Эту величину, вставленную в третью строку, Эйнштейн назвал космологическим членом, или космологической постоянной; этот шаг позволил ему вздохнуть с облегчением — по крайней мере отчасти. Если бы космологическая постоянная для вселенной имела подходящее значение — то есть если бы пространство обладало правильным количеством собственной энергии, — его теория гравитации оказалась бы в согласии с преобладавшим в то время убеждением о неизменности вселенной на больших расстояниях. Он не мог объяснить, почему пространство должно заключать в себе именно то количество энергии, которое нужно, чтобы обеспечить равновесие, но ему по крайней мере удалось показать, что общая теория относительности, дополненная космологической постоянной нужной величины, приводит к той картине космоса, в которую верил он сам и которую ожидали увидеть другие. [2]

Первородный атом

Леметр, подошедший к Эйнштейну на Сольвеевском конгрессе 1927 года в Брюсселе, выпадал из этой картины: из его результата следовало, что общая теория относительности стала лоном новой космологической парадигмы, согласно которой пространство расширяется. Эйнштейн не так давно одолел математику в схватке за статичную вселенную, отмёл сходные заявления Фридмана, и теперь у него попросту не было достаточного запаса терпения, чтобы ещё раз возвращаться к идее о расширяющемся космосе. Он поставил Леметру в вину слепое следование математическим выкладкам и готовность принять «чудовищные физические выводы», очевидно являвшиеся абсурдом.

Упрёк со стороны столь уважаемой фигуры стал для Леметра серьёзным ударом — но ненадолго. В 1929 году, используя крупнейший в мире на тот момент телескоп в обсерватории Маунт-Вилсон, американский астроном Эдвин Хаббл получил убедительные свидетельства в пользу того, что все далёкие галактики двигаются прочь от Млечного Пути. Фотоны, которые изучал Хаббл, проделали долгий путь к Земле, неся с собой ясное сообщение: вселенная не статична — она расширяется. Фундамент, который Эйнштейн подвёл под космологическую постоянную, обрушился. Модель Большого взрыва, описывавшая космос, который начал расширяться из чрезвычайно плотного состояния и продолжает делать это по сей день, обрела широкую известность как научный сценария творения. [3]

Леметр и Фридман были реабилитированы. Фридман снискал репутацию учёного, который первым исследовал решения, описывающие расширяющуюся вселенную, а Леметр стал известен как исследователь, который независимо получил эти решения и выстроил на их основе ясные космологические сценарии. Их работа была признана триумфом математического подхода к изучению космоса. Эйнштейна, напротив, оставили досадовать на то, что он вообще решил взяться за третью строку налогового бланка общей теории относительности. Если бы над ним не довлело ничем не подкреплённое убеждение в статичности вселенной, он бы не ввёл в свои уравнения космологическую постоянную и сумел бы предсказать расширение вселенной за десять с лишним лет до того, как его обнаружили экспериментально.

Однако история космологической постоянной была далека от завершения.

Модели и данные

В космологической модели Большого взрыва есть один момент, который представляется весьма существенным. Эта модель даёт нам не один космологический сценарий, а целый их набор; все они подразумевают расширение вселенной, но отличаются общей формой пространства и, в числе прочего, расходятся в ответе на вопрос о том, является ли всё пространство в целом конечным или же бесконечным. Поскольку последнее различие оказывается жизненно важным для размышлений о параллельных мирах, я опишу имеющиеся возможности подробнее.

Космологический принцип — предполагаемая однородность космоса — налагает ограничения на геометрию пространства, поскольку большинство геометрических форм недостаточно однородны, чтобы подойти под эти требования: они вспучиваются в одном месте, уплощаются в другом и скручиваются в третьем. Однако из космологического принципа не следует единственность формы трёх измерений нашего пространства — он лишь проводит жёсткий отбор среди кандидатов, ограничивая имеющиеся возможности. Наглядно представить возможные варианты — непростая задача даже для профессионала, однако нам поможет тот факт, что ситуация в двух измерениях, которую мы можем изобразить без труда, является математически точным аналогом трёхмерной картины.

Для начала рассмотрим с этой целью идеально круглый бильярдный шар. Его поверхность двумерна (положение точки на его поверхности, как и на поверхности Земли, мы можем задать двумя фрагментами данных — скажем, широтой и долготой, — а именно это мы и подразумеваем, когда говорим, что форма двумерна) и совершенно однородна в том смысле, что любое место на ней неотличимо от остальных. Математики называют поверхность бильярдного шара двумерной сферой и говорят, что она имеет постоянную положительную кривизну. «Положительность» здесь означает, грубо говоря, что ваше отражение в сферическом зеркале будет выглядеть раздувшимся наружу, а «постоянность» — что любая сторона сферы будет одинаково искажать отражение.

Теперь представим себе идеально гладкий стол. Поверхность стола, как и поверхность бильярдного шара, однородна (или почти однородна). Если бы вы были муравьём, гуляющим по столу, вашему взору открывался бы один и тот же вид, где бы вы ни находились — при условии, что это далеко от края стола. Впрочем, восстановить полную однородность не так уж трудно: мы просто должны вообразить стол без краёв. Сделать это можно двумя путями. Представьте себе стол, который бесконечно тянется влево, вправо, вперёд и назад. Это не совсем обычный стол — его поверхность бесконечна, — но упасть с него нельзя, а значит, мы достигли поставленной цели — убрали края. Альтернативный вариант — поверхность, имитирующая старую компьютерную игру: когда мистер Пакман исчезает за левым краем, он немедленно появляется у правого края; когда он уходит за край экрана снизу, он тут же возникает сверху. Ни один обычный стол не обладает таким свойством, но это вполне осязаемая геометрическая фигура, называемая двумерным тором. В примечаниях я обсуждаю эту фигуру более полно, {8} здесь же стоит подчеркнуть только две её характеристики: подобно бесконечному столу, экран компьютерной игры однороден и не имеет краёв. Границы являются кажущимися: мистер Пакман может пересечь их и при этом остаться в игре.

Математики говорят, что бесконечный стол и экран компьютерной игры — это поверхности постоянной нулевой кривизны. Слово «нулевая» говорит о том, что и зеркальный стол, и зеркальный компьютерный экран отразят вас без искажений, а слово «постоянная», как и прежде, означает, что ваше отражение будет выглядеть одинаково вне зависимости от того, напротив какой точки поверхности вы встанете. Разница между этими двумя формами проявляется только в глобальной перспективе. Если вы отправитесь в поездку по бесконечному столу, сохраняя постоянное направление, вы не вернётесь домой никогда; на экране компьютерной игры вы можете объехать всю фигуру и вернуться в пункт отправления, ни разу не повернув руль.